Number
Theory
Part-1

Number Theory
 Part-1

P. Sam Johnson

NITK, Surathkal

Overview

We discuss the following in two lectures:

- greatest common divisor of two integers m and n, denoted by $\operatorname{gcd}(m, n)$
- a famous Euclid's algorithm to calculate $\operatorname{gcd}(m, n)$
- primes numbers - the fundamental building blocks of all the positive integers
- fundamental theorem of arithmetic (unique factorization theorem).

"Mod" : The binary operation

Number
Theory
Part-1

If m and n are positive integers, then the quotient of

$$
\text { " } n \text { divided by } m \text { " }
$$

is

$$
\lfloor n / m\rfloor .
$$

We use a simple notation for the remainder of this division, and we call " r is congruent to n modulo an integer $m>0$ " and write it

$$
r \equiv n \quad \bmod m
$$

That is, $r \equiv n \bmod m \Longleftrightarrow m$ divides $(r-n)$.

Since

$$
n=\underbrace{m\lfloor n / m\rfloor}_{\text {quotient }}+\underbrace{n \quad \bmod m}_{\text {remainder }}
$$

the basic formula for $n \bmod m$ is $n-m\lfloor n / m\rfloor$.
Hence we can generalize to negative integers, and in fact to arbitrary real numbers:

$$
x \quad \bmod y=x-y\lfloor x / y\rfloor, \text { for } y \neq 0
$$

This defines "mod" as a binary operation, just an addition and subtraction are binary operations. What is the meaning of x $\bmod y$ when x and y are positive real numbers?

Imagine a circle of circumference y whose points have been assigned real numbers in the interval $[0, y)$. Starting at 0 , if we travel a distance x around the circle we end up at $x \bmod y$.

Number
Theory
Part-1

Here are some integer-valued examples for x and y, when x or y is negative.

$$
\begin{aligned}
5 \bmod 3 & =2 \\
5 \bmod -3 & =-1 \\
-5 \bmod 3 & =1 \\
-5 \bmod -3 & =-2 .
\end{aligned}
$$

The number after 'mod' is called the modulus. There is no name to call the number before 'mod'.

- Modulus may be negative. But in applications, the modulus is usually positive.
- In both cases the value of x mody is between 0 and the modulus: $0 \leq x \bmod y<y$, for $y>0$; $0 \geq x \bmod y>y$, for $y<0$.

What about $y=0$?

Number
Theory
Part-1

When $y=0, x \bmod y=x-y\lfloor x / y\rfloor$ is undefined. In order to avoid division by zero, we can define

$$
x \bmod 0=x
$$

This convention preserves the property that $x \bmod y$ always differs from x by a multiple of y.

Divisibility

Both notions are different. They can be understood from the following:
$\square 0$ is the only one multiple of 0 , but nothing is divisible by 0.

- Every integer is a multiple of -1 , but no integer is divisible by -1 .
We say that " m divides n " or n is divisible by m (denoted by $m \backslash n$) if $m>0$ and n / m is an integer ($n=m k$ for some integer k).

The definition of " $m \backslash n$ " requires that " n is a multiple of m " and m has to be positive.

In some text books, the definition for " m divides n " is defined as " n is a multiple of m ". It means almost the same thing except that m does not have to be positive.

Greatest common divisor

Number
Theory
Part-1

$$
\operatorname{gcd}(m, n)=\max \{k: k \backslash m \text { and } k \backslash n\}
$$

- If $n>0$, then $\operatorname{gcd}(0, n)=n$, because any positive number divides 0 , and because n is the largest divisor of itself.
- The value of $\operatorname{gcd}(0,0)$ is undefined.

Euclid's algorithm, by great mathematician, who

 lived around 2300 years agoWe can compute $\operatorname{gcd}(m, n)$ for $0 \leq m<n$, a 2300-year-old method called Euclid's algorithm, which uses the recurrence

$$
\begin{aligned}
\operatorname{gcd}(0, n) & =n \\
\operatorname{gcd}(m, n) & =\operatorname{gcd}(n \bmod m, m), \quad \text { for } n \geq 0
\end{aligned}
$$

The stated recurrence is valid, because any common divisor of m and n must also be a common divisor of both m and the number " $n \bmod m$ ", which is $n-\lfloor n / m\rfloor m$.

Example

$$
\operatorname{gcd}(12,18)=\operatorname{gcd}(6,12)=\operatorname{gcd}(0,6)=6
$$

m	n	$r=n \bmod m$	m	$\operatorname{gcd}(m, n)$
12	18	6	12	-
6	12	0	6	6

Euclid's algorithm

Number
Theory
Part-1

Exercise

Use Euclid's algorithm to compute integers m^{\prime} and $n^{\prime}\left(m^{\prime}\right.$ or n^{\prime} can be negative) satisfying

$$
m m^{\prime}+n^{\prime} n=\operatorname{gcd}(m, n)
$$

Euclid's algorithm is most well-known and effective method of finding integers m^{\prime} and n^{\prime} satisfying

$$
m m^{\prime}+n^{\prime} n=\operatorname{gcd}(m, n)
$$

Proof. If $m=0$, we can take $m^{\prime}=0$ and $n^{\prime}=1$.
Otherwise we let $r=n \bmod m$ and apply the method recursively with r and m in place of m and n, computing \bar{r} and \bar{m} such that

$$
\bar{r} r+\bar{m} m=\operatorname{gcd}(r, m) .
$$

Number
Theory
Part-1

Since $r=n-\lfloor n \backslash m\rfloor m$ and $\operatorname{gcd}(r, m)=\operatorname{gcd}(m, n)$, there equation tells us that

$$
\bar{r}=(n-\lfloor n \backslash m\rfloor m)+\bar{m} m=\operatorname{gdc}(m, n) .
$$

The left side can be rewritten to show its dependency on m and n :

$$
(\bar{m}-\lfloor n \backslash m\rfloor \bar{r}) m+\bar{r} n=\operatorname{gdc}(m, n)
$$

hence $m^{\prime}=\bar{m}-\lfloor n \backslash m\rfloor \bar{r}$ and $n^{\prime}=\bar{r}$ are the required integers.

Corollary

$k \backslash m$ and $k \backslash n \Longleftrightarrow k \operatorname{gcd}(m, n)$.

Number Theory Part-1

The example shown below illustrates a procedure to calculate $\operatorname{gcd}(12,6)$.

Example

m	n	$\lfloor n / m\rfloor$	r	m	\bar{r}	\bar{m}	m^{\prime}	n^{\prime}	$m^{\prime} m+n^{\prime} n=\operatorname{gcd}(m, n)$
6	12	2	0	6	0	1	1	0	$\underline{1} \cdot 6+\underline{0} \cdot 12=6$
12	18	1	6	12	1	0	-1	1	$\underline{-1} \cdot 12+\underline{1} .18=6$

Exercises

- Write the identity with (a single sum) " \sum-notation" to do sum over all divisors on n.
- Do above exercise with a double sum, "double位-notation" to do sum over all divisors on n.

Least common multiple

Number
Theory
Part-1

The least common multiple of two integers m and n is the smallest integer that is divisible by both m and n :

$$
\operatorname{lcm}(m, n)=\min \{k: k>0, m \backslash k \text { and } n \backslash k\} .
$$

lcm is undefined if $m \leq 0$ or $n \leq 0$.

A positive integer p is called prime if it has just two divisors, namely 1 and p.

By convention, 1 is not a prime, so the sequence of primes starts out like this: $2,3,5,7,11,13, \ldots$.

- The numbers have 3 or more divisors are called composite.
- Every integer greater than 1 is either prime or composite, but not both.
- Primes are of great importance, because they are the fundamental building blocks of all the positive integers.

Number
Theory
Part-1

Theorem

Any positive integer n can be written as a product as primes,

$$
\begin{equation*}
n=p_{1}, p_{2} \ldots p_{n}=\prod_{k=1}^{n} p_{k}, \quad p_{1} \leq p_{2} \leq \cdots \leq p_{n} \tag{1}
\end{equation*}
$$

Moreover, the expansion in (1) is unique: There is only one way to write n as a product of primes in nondecreasing order.

This statement is called the fundamental theorem of arithmetic (unique factorization theorem).

Proof.

We prove by induction.
If $m=0$, we consider this to be an empty product, whose value is 1 by definition.

If $n>1$ is not prime, it has a divisor n_{1} such that $1<n_{1}<n$; thus we can write $n=n_{1} n_{2}$ and (by induction) we know that n_{1} and n_{2} can be written as a product of primes.

There is certain only one possibility when $n=1$, since the product must be empty in that case.

Let us suppose that $n>1$ and that all smaller numbers factor uniquely.

Number
Theory
Part-1

Suppose we have 2 factorization $n=p_{1} p_{2} \cdots p_{m}=q_{1} q_{2} \cdots q_{k}$ where $p_{1} \leq \cdots p_{m}$ and $q_{1} \leq \cdots \leq q_{k}$, where the p 's and q 's are all primes.

Claim : Each p_{i} is some q_{j} and $m=k$.
Suppose $p_{1}<q_{1}$. Since p_{1} and q_{1} are prime, $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$. Hence by Euclid'd algorithm, there are integers a and b such that $a p_{1}+b q_{1}=1$.

Therefore $\left(a p_{1}\right) q_{2} \cdots q_{k}+\left(b q_{1}\right) q_{2} \cdots q_{k}-q_{2} \cdots q_{k}$.
Since p_{1} divides $\left(a p_{1}\right)\left(p_{2} \cdots p_{k}\right)$ and $n=q_{1} q_{2} \cdots q_{k}, p_{1}$ divides $q_{2} \cdots q_{k}$.

Thus p_{1} divides $q_{2} \cdots q_{k}$ so $q_{2} \cdots q_{k} / p_{1}$ is an integer, and $q_{2} \ldots q_{k}$ has a prime factorization in which p_{1} appears.

Number
Theory
Part-1

But $q_{2} \cdots q_{k}<n$, so it has a unique factorization (by induction). This contradiction proves that $p_{1}=q_{1}$.

Hence $\frac{n}{p_{1}}=p_{2} \cdots p_{m}$.
Reasoning the same way, p_{2} must equal one of the remaining q_{j}.

Relabeling again if necessary, say $p_{2}=q_{2}$.
Then $\frac{n}{p_{1} p_{2}}=p_{3} \ldots p_{m}=q_{3} \ldots q_{k}$.
This can be done for each of the $m b_{i}$'s showing that $m \leq n$ and every p_{i} is a q_{j}.

Applying the same argument with the p 's and q 's reversed shows $n \leq m$ (hence $m=n$) and every q_{j} is a p_{i}.

This completes the proof.

Uniqueness in the theorem

The requirement that the factors be prime is necessary : factorizations containing composite numbers may not be unique. For example, $12=2 \times 6=3 \times 4$.

This theorem is one of the main reasons for which 1 is not considered as a prime number: if 1 were prime, the factorization would not be unique, as, for example, 3, 1.3, 1.1.3, etc. are all valid factorization of 3.

An important fact : If a prime p divides a product $m n$ then it divides either m or n, perhaps both, gives the unique factorization theorem and vice-versa.

Do composite numbers have this property?

But a prime is unsplittable, so it must divide one of the original factors.

Fundamental theorem in another way

Number
Theory
Part-1

Theorem

Every positive integer can be written uniquely in the form

$$
\begin{equation*}
n=\prod_{p} p^{n_{p}} \tag{2}
\end{equation*}
$$

where each $n_{p} \geq 0$.

The right-hand-side is a product over infinitely many primes; but for any particular n, "all" but a few exponents are zero, so the corresponding factors are 1.

Therefore it is really a finite product.

For example,

$$
\begin{aligned}
1200 & =24 \times 31 \times 52=3 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \\
& =5 \times 2 \times 3 \times 2 \times 5 \times 2 \times 2=5^{2} .3^{1} .2^{4}
\end{aligned}
$$

The theorem is stating two things: first, that 1200 can be represented as a product of primes, and second, no matter how this is done, there will always be four 2 s , one 3 , two 5 s , and no other primes in the product.

Canonical representation of a positive integer

Number
Theory
Part-1

Theorem

Every positive integer $n>1$ can be represented in exactly one way as a product of prime powers:

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

where $p_{1}<p_{2}<\cdots<p_{k}$ are primes and the α_{i} are positive integers.

This representation is called the canonical representation of n, or the standard form of n.

For example $999=33 \times 37,1000=23 \times 53,1001=7 \times 11 \times 13$.

Note that factors $p^{0}=1$ may be inserted without changing the value of n (e.g. $1000=2^{3} \times 3^{0} \times 5^{3}$).

In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers,

$$
n=2^{n_{1}} 3^{n_{2}} 5^{n_{3}} 7^{n_{4}} \cdots=\prod p_{i}^{n_{i}}
$$

where a finite number of the ni are positive integers, and the rest are zero.

Allowing negative exponents provide a canonical form for positive rational numbers.

Formula $n=\prod_{p} p^{n_{p}}$ gives unique respresentation of n, where each $n_{p} \geq 0$.

For a positive integer n, we have the sequence $\left\langle n_{2}, n_{3}, \ldots\right\rangle$ as a number system.

For example, the prime-exponent representation of 12 is
$\langle 2,1,0,0, \ldots\rangle$ and the prime-exponent representation of 18 is $\langle 1,2,0,0, \ldots\rangle$.
$\square k=m n \Longleftrightarrow k_{p}=m_{p}+n_{p}$ for all p.
■ $m \backslash n \Longleftrightarrow m_{p} \leq n_{p}$ for all p.
■ $k=\operatorname{gcd}(m, n) \Longleftrightarrow k_{p}=\min \left\{m_{p}, n_{p}\right\}$ for all p.
■ $k=\operatorname{lcm}(m, n) \Longleftrightarrow k_{p}=\max \left\{m_{p}, n_{p}\right\}$ for all p.

Arithmetic operations

Number Theory Part-1

The canonical representation, when it is known, is convenient for easily computing products, gcd, and Icm:

$$
\begin{aligned}
a \cdot b & =2^{a_{2}+b_{2}} 3^{a_{3}+b_{3}} 5^{a_{5}+b_{5}} 7^{a_{7}+b_{7}} \cdots \\
& =\prod p_{i}^{a_{p_{i}}+b_{p_{i}}} \\
\operatorname{gcd}(a, b) & =2^{\min \left(a_{2}, b_{2}\right)} 3^{\min \left(a_{3}, b_{3}\right)} 5^{\min \left(a_{5}, b_{5}\right)} 7^{\min \left(a_{7}, b_{7}\right)} \ldots \\
& =\prod p_{i}^{\min \left(a_{p_{i}}, b_{p_{i}}\right)} \\
\operatorname{Icm}(a, b) & =2^{\max \left(a_{2}, b_{2}\right)} 3^{\max \left(a_{3}, b_{3}\right)} 5^{\max \left(a_{5}, b_{5}\right)} 7^{\max \left(a_{7}, b_{7}\right)} \ldots \\
& =\prod p_{i}^{\max \left(a_{p_{i}}, b_{p_{i}}\right)}
\end{aligned}
$$

Exercise

Find $\operatorname{gcd}(12,18)$ and $\operatorname{lcm}(12,18)$, using prime-exponent representations.

Number
Theory
Part-1
However, as Integer factorization of large integers is much harder than computing their product, gcd or Icm, these formulas have, in practice, a limited usage.

We have seen that any integer $n>1$ has a unique prime factorization. How many primes are there ?

Theorem (Euclid)

There are infinitely many primes.

Proof.

Suppose there are finitely many, say, $p_{1}, p_{2}, \ldots, p_{k}$.
Let $M=p_{1} p_{2} \cdots p_{k}+1$.

Number
Theory
Part-1

Each prime $p_{i}(1 \leq i \leq k)$ divides $M-1$, none of the k primes can divide M.

So M itself is prime (no prime divides consective integers), or, M has a prime factor $q \neq p_{i}$ for any $1 \leq i \leq k$, a contradiction to our assumption that $p_{1}, p_{2}, \ldots, p_{k}$ are the only primes.

Trial division

Number
Theory
Part-1

The property of being prime (or not) is called primality. A simple but slow method of verifying the primality of a given number n is known as trial division.

It consists of testing whether n is a multiple of any integer between 2 and \sqrt{n}.

Algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of special forms, such as Mersenne numbers.

As of September 2015, the largest known prime number has $17,425,170$ decimal digits (17 billion 425 thoudsand and 170).

Distribution of primes : How are the primes scattered or distributed in \mathbb{N} ?

Number
Theory
Part-1

There are infinitely many primes, as demonstrated by Euclid around 300 BC .

There is no known useful formula that sets apart all of the prime numbers from composites.

However, the distribution of primes, that is to say, the statistical behaviour of primes in the large, can be modelled.

Guess by Gauss : Let $\pi(x)$ be the number of primes $\leq x$.
Gauss attempted to show (but failed) that

$$
\lim _{n \rightarrow \infty} \frac{\pi(x)}{x \log x}=1
$$

The first result in that direction is the prime number theorem which describes the asymptotic distribution of the prime numbers among the positive integers.

It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs.

The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).

The theorem says that the probability that a given, randomly chosen number n is prime is inversely proportional to its number of digits, or to the logarithm of n.

Number Theory Part-1

The first such distribution found is $\pi(N) \sim N / \log (N)$, where $\pi(N)$ is the prime-counting function and $\log (N)$ is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to $1 / \log (N)$.

Consequently, a random integer with at most $2 n$ digits (for large enough n) is about half as likely to be prime as a random integer with at most n digits.

For example, among the positive integers of at most 1000 digits, about one in 2300 is prime $\left(\log \left(10^{1000}\right) \approx 2302.6\right)$, whereas among positive integers of at most 2000 digits, about one in 4600 is prime $\left(\log \left(10^{2000}\right) \approx 4605.2\right)$. In other words, the average gap between consecutive prime numbers among the first N integers is roughly $\log (N)$.

Open Problems

Number
Theory Part-1

Many questions regarding prime numbers remain open, such as Goldbach's conjecture (that every even integer greater than 2 can be expressed as the sum of two primes), and the twin prime conjecture (that there are infinitely many pairs of primes whose difference is 2).

- Are there infinitely primes of type $2 n+1$?
- Are there infinitely primes of type $4 n+1$?
- Are there infinitely primes of type $4 n+3$?
- Are there infinitely primes of type $6 n+1$?
- Are there infinitely primes of type $6 n+5$?

Various braches of number theory due to prime numbers

Such questions spurred the development of various branches of number theory, focusing on analytic or algebraic aspects of numbers.

Primes are used in several routines in information technology, such as public-key cryptography, which makes use of properties such as the difficulty of factoring large numbers into their prime factors.

Prime numbers give rise to various generalizations in other mathematical domains, mainly algebra, such as prime elements and prime ideals.

References

3. Herbert S. Wilf, "Generatingfunctionology", Third Edition, AK Peters Ltd., Wellesley, Massachusetts.
